Topic - RNase-Resistant Virus-Like Particles Posted: 27 Jan 2022 at 7:51am By reaper
FIG. 1. Armored L-RNA packaging system. Two expressing vectors were constructed, in which the maturase and the coat protein were expressed from one plasmid [pET-28(b)] and the pac site and the six-target chimeric RNA sequence were produced from the second plasmid (pACYCDuet-1). The pac site was located between SARS3 and HCV. 3V armored L-RNA was produced by inducing and expressing the two-plasmid system.FIG. 2. Characterization of the recombinant RNA packaged in armored L-RNA. Recombinant RNA was isolated from 3V armored L-RNA, fractionated in a denaturing 3% agarose gel, stained with ethidium bromide, and detected by using UV fluorescence. Abbreviations: M, RNA marker; 3V, 3V armored L-RNA recombinant RNA.FIG. 3. Ethidium bromide-stained 1% agarose gel of RT-PCR amplification products of RNA extracted from 3V armored L-RNA and 3V armored RNA. (A) RT-PCR amplification products of RNA extracted from 3V armored L-RNA. Lane 1, negative control with no template; lanes 2 and 3, negative control without RT; lanes 4 and 5, positive control of pACYC-3V plasmid; lanes 6 to 8, RT-PCR of 3V full-length L-RNA. (B) RT-PCR amplification products of RNA extracted from 3V armored RNA: lane 1, positive control of pET-MS2-3V plasmid using the primers S-SARS1 and HA300RT-A; lane 2, RT-PCR of SARS-CoV1 plus SARS-CoV2 plus SARS-CoV3 plus HCV+HA300 using the primers S-SARS1 and HA300RT-A; lane 3, positive control of pET-MS2-3V plasmid using the primers S-SARS1 and HCV-LAP1; lane 4, RT-PCR of SARS-CoV1 plus SARS-CoV2 plus SARS-CoV3 plus HCV using the primers S-SARS1 and HCV-LAP1; lane 5, positive control of pET-MS2-3V plasmid using the primers S-SARS1 and A-SARS3; lane 6, negative control without RT using primers S-SARS1 and A-SARS3; lane 7, RT-PCR of SARS-CoV1 plus SARS-CoV2 plus SARS-CoV3 using the primers S-SARS1 and A-SARS3; lane 8, RT-PCR of SARS-CoV1 plus SARS-CoV2 using the primers S-SARS1 and A-SARS2; lane 9, positive control of pET-MS2-3V plasmid using the primers S-SARS1 and A-SARS2; lane 10, negative control without reverse transcription using the primers S-SARS1 and A-SARS2.FIG. 4. Stability study of 3V armored L-RNA. 3V armored L-RNA was added to newborn calf serum to a final concentration of 10,000 and 10,000,000 copies/ml. Samples were incubated at 4°C, 37°C, or room temperature for 0, 1, 2, 4, and 8 weeks. Samples were removed at each time point and were stored at ∼80°C until the completion of the experiment. From these materials, we isolated template RNA for real-time RT-PCR assays. Water was used as a negative control. All RNA templates were assayed in a single run by using an HCV RNA PCR fluorescence quantitative diagnostic kit (Shanghai Kehua Bio-Engineering Co., Ltd.). Real-time RT-PCR was conducted by using LightCycler technology (Roche). The mean for low-copy samples was 67,226 IU/ml (4.83 log10; range, 50,100 to 79,400 IU/ml [range, 4.70 to 4.92 log10]), and the coefficient of variation was 12.9%. The mean for high-copy samples was 29,060,000 IU/ml (7.45 log10; range, 22,900,000 to 41,700,000 IU/ml [range, 7.36 to 7.62 log10]), and the coefficient of variation was 22%.FIG. 5. Calibration of the real-time RT-PCR assay for HCV, SARS-CoV2, and HA300 (H5N1). First, the quantified 3V armored L-RNA was diluted with newborn calf serum 10-fold serially to obtain 100, 1,000, 10,000, 100,000, and 1,000,000 copies/ml. We used the National Reference material for HCV RNA (GBW09151, 2.26 × 103 IU ml−1 to 4.22 × 107 IU ml−1) to calibrate the serial dilutions of chimeric armored L-RNA and then used the calibrated L-RNA to prepare calibrators for the two real-time RT-PCR assays. From these materials, we isolated RNA template for RT-PCR assays. Newborn calf serum was used as a negative control. Real-time RT-PCR was conducted on a LightCycler thermal cycler (Roche). (A) Log concentration of the international standard for HCV RNA versus the cycle number for the HCV RT-PCR; (B) amplification curve for the HCV RT-PCR assay; (C) amplification curve for the SARS-CoV2 RT-PCR assay; (D) amplification curve for the HA300 (H5N1) RT-PCR assay.
TABLE 1. Primers used for PCR amplification (Table view)
BamHI, HindIII, FseI, and PacI restriction sites are indicated by underscoring; a C vairiant is indicated in boldface type.
TABLE 2. Thermal cycle conditions for the three different kits used in real-time RT-PCR assays (Table view)
Program
No. of cycles
Temp (°C)
Incubation time (min:s)
Temp transition rate (°C/s)
Acquisition mode
HCV
1
1
50
25:00
20
None
2
1
94
2:00
20
None
3
5
93
3:00
20
None
55
15:00
2
None
72
15:00
20
None
4
42
93
3:00
20
None
60
45:00
20
Single
5
1
40
30:00
20
None
H5N1
1
1
42
30:00
20
None
2
1
92
3:00
20
None
3
5
92
10:00
20
None
45
30:00
20
None
72
1:00
20
None
4
40
92
10:00
20
None
60
30:00
20
Single
5
1
40
0:00
20
None
SARS-Cov2
1
1
42
30:00
20
None
2
1
92
3:00
20
None
3
5
92
10:00
20
None
52
20:00
2
None
72
30:00
20
None
40
92
5:00
20
None
4
60
30:00
20
Single
5
1
40
10:00
20
None
Acknowledgments
This study was supported in part by the SEPSDA project of the European Commission (under no. Sp22-CT-2004-003831), the National Natural Science Foundation of China (30371365 and 30571776), and the Capital Medicine Development Foundation of Beijing (2002-3041).
REFERENCES
1.
Argetsinger, J., and G. Gussin.1966. Intact ribonucleic acid from defective particles of bacteriophage R17. J. Mol. Biol.21:421-424. PubMed.
2.
Beld, M., R. Minnaar, J. Weel, C. Sol, M. Damen, H. van der Avoort, P. Wertheim-van Dillen, A. van Breda, and R. Boom.2004. Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with an armored RNA internal control. J. Clin. Microbiol.42:3059-3064. Crossref. PubMed.
3.
Bressler, A. M., and F. S. Nolte.2004. Preclinical evaluation of two real-time, reverse transcription-PCR assays for detection of the severe acute respiratory syndrome coronavirus. J. Clin. Microbiol.42:987-991. Crossref. PubMed.
4.
Das, A., E. Spackman, D. Senne, J. Pedersen, and D. L. Suarez.2006. Development of an internal positive control for rapid diagnosis of avian influenza virus infections by real-time reverse transcription-PCR with lyophilized reagents. J. Clin. Microbiol.44:3065-3073. Crossref. PubMed.
5.
Donia, D., M. Divizia, and A. Pana.2005. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR. J. Virol. Methods126:157-163. PubMed.
6.
Eisler, D. L., A. McNabb, D. R. Jorgensen, and J. L. Isaac-Renton.2004. Use of an internal positive control in a multiplex reverse transcription-PCR to detect West Nile virus RNA in mosquito pools. J. Clin. Microbiol.42:841-843. Crossref. PubMed.
7.
Heisenberg, M.1966. Formation of defective bacteriophage particles by fr amber mutants. J. Mol. Biol.17:136-144. PubMed.
8.
Hietala, S. K., and B. M. Crossley.2006. Armored RNA as virus surrogate in a real-time reverse transcriptase PCR assay proficiency panel. J. Clin. Microbiol.44:67-70. Crossref. PubMed.
9.
Horn, W. T., M. A. Convery, N. J. Stonehouse, C. J. Adams, L. Liljas, S. E. Phillips, and P. G. Stockley.2004. The crystal structure of a high affinity RNA stem-loop complexed with the bacteriophage MS2 capsid: further challenges in the modeling of ligand-RNA interactions. RNA10:1776-1782. PubMed.
10.
Horton, R. M., H. D. Hunt, S. N. Ho, J. K. Pullen, and L. R. Pease.1989. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene77:61-68. PubMed.
11.
Huang, Q., Y. Cheng, Q. Guo, and Q. Li.2006. Preparation of a chimeric Armored RNA as a versatile calibrator for multiple virus assays. Clin. Chem.52:1446-1448. PubMed.
12.
Konnick, E. Q., S. M. Williams, E. R. Ashwood, and D. R. Hillyard.2005. Evaluation of the COBAS hepatitis C virus (HCV) TaqMan analyte-specific reagent assay and comparison to the COBAS Amplicor HCV Monitor V2.0 and Versant HCV bDNA 3.0 assays. J. Clin. Microbiol.43:2133-2140. Crossref. PubMed.
13.
Lowary, P. T., and O. C. Uhlenbeck.1987. An RNA mutation that increases the affinity of an RNA-protein interaction. Nucleic Acids Res.15:10483-10493. PubMed.
14.
Oliver, A. R., S. F. Pereira, and D. A. Clark.2007. Comparative evaluation of the automated Roche TaqMan real-time quantitative human immunodeficiency virus type 1 RNA PCR assay and the Roche AMPLICOR version 1.5 conventional PCR assay. J. Clin. Microbiol.45:3616-3619. Crossref. PubMed.
15.
Pasloske, B. L., C. R. Walkerpeach, R. D. Obermoeller, M. Winkler, and D. B. DuBois.1998. Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. J. Clin. Microbiol.36:3590-3594. Crossref. PubMed.
16.
Pasloske, B. L., D. DuBois, D. Brown, and M. Winkler. April 2001. Ribonuclease-resistant RNA preparation and utilization. U.S. patent 6,214,982.
17.
Pickett, G. G., and D. S. Peabody.1993. Encapsidation of heterologous RNAs by bacteriophage MS2 coat protein. Nucleic Acids Res.21:4621-4626. PubMed.
18.
Romaniuk, P. J., P. Lowary, H. N. Wu, G. Stormo, and O. C. Uhlenbeck.1987. RNA binding site of R17 coat protein. Biochemistry26:1563-1568. PubMed.
19.
Rowsell, S., N. J. Stonehouse, M. A. Convery, C. J. Adams, A. D. Ellington, I. Hirao, D. S. Peabody, P. G. Stockley, and S. E. Phillips.1998. Crystal structures of a series of RNA aptamers complexed to the same protein target. Nat. Struct. Biol.5:970-975. PubMed.
20.
Saldanha, J., and A. Heath.2003. Collaborative study to calibrate hepatitis C virus genotypes 2-6 against the HCV International Standard, 96/790 (genotype 1). Vox Sang84:20-27. PubMed.
21.
Saldanha, J., A. Heath, C. Aberham, J. Albrecht, G. Gentili, M. Gessner, and G. Pisani.2005. World Health Organization collaborative study to establish a replacement WHO international standard for hepatitis C virus RNA nucleic acid amplification technology assays. Vox Sang88:202-204. PubMed.
22.
Scheuermann, R. H., and H. Echols.1984. A separate editing exonuclease for DNA replication: the epsilon subunit of Escherichia coli DNA polymerase III holoenzyme. Proc. Natl. Acad. Sci. USA81:7747-7751. PubMed.
23.
Shiba, T., and Y. Suzuki.1981. Localization of A protein in the RNA-A protein complex of RNA phage MS2. Biochim. Biophys. Acta654:249-255. PubMed.
24.
Stockley, P. G., N. J. Stonehouse, C. Walton, D. A. Walters, G. Medina, J. M. Macedo, H. R. Hill, S. T. Goodman, S. J. Talbot, and H. K. Tewary.1993. Molecular mechanism of RNA-phage morphogenesis. Biochem. Soc. Trans.21:627-633. PubMed.
25.
Stockley, P. G., N. J. Stonehouse, and K. Valegard.1994. Molecular mechanism of RNA phage morphogenesis. Int. J. Biochem.26:1249-1260. PubMed.
26.
Talbot, S. J., S. Goodman, S. R. Bates, C. W. Fishwick, and P. G. Stockley.1990. Use of synthetic oligoribonucleotides to probe RNA-protein interactions in the MS2 translational operator complex. Nucleic Acids Res.18:3521-3528. PubMed.
27.
Valegard, K., J. B. Murray, N. J. Stonehouse, S. van den Worm, P. G. Stockley, and L. Liljas.1997. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J. Mol. Biol.270:724-738. PubMed.
28.
WalkerPeach, C. R., M. Winkler, D. B. DuBois, and B. L. Pasloske.1999. Ribonuclease-resistant RNA controls (armored RNA) for reverse transcription-PCR, branched DNA, and genotyping assays for hepatitis C virus. Clin. Chem.45:2079-2085. PubMed.
29.
Witherell, G. W., J. M. Gott, and O. C. Uhlenbeck.1991. Specific interaction between RNA phage coat proteins and RNA. Prog. Nucleic Acid Res. Mol. Biol.40:185-220. PubMed.